Management of Acute Hypertensive Heart Failure

Table of Contents

References

    • Yancy C.W.
    • Jessup M.
    • Bozkurt B.
    • et al.
    2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. 2013; 62: e147-e239View in Article
    • Scopus (4706)
    • PubMed
    • Crossref
    • Google Scholar
    • Peacock W.F.
    • Cannon C.M.
    • Singer A.J.
    • et al.
    Considerations for initial therapy in the treatment of acute heart failure. 2015; 19: 399View in Article
    • Scopus (14)
    • PubMed
    • Crossref
    • Google Scholar
    • Fonarow G.C.
    • Stough W.G.
    • Abraham W.T.
    • et al.
    Characteristics, treatments, and outcomes of patients with preserved systolic function hospitalized for heart failure: a report from the OPTIMIZE-HF Registry. 2007; 50: 768-777View in Article
    • Scopus (824)
    • PubMed
    • Crossref
    • Google Scholar
    • Peacock F.
    • Amin A.
    • Granger C.B.
    • et al.
    Hypertensive heart failure: patient characteristics, treatment, and outcomes. 2011; 29: 855-862View in Article
    • Scopus (33)
    • PubMed
    • Abstract
    • Full Text
    • Full Text PDF
    • Google Scholar
    • Cotter G.
    • Metra M.
    • Milo-Cotter O.
    • et al.
    Fluid overload in acute heart failure–re-distribution and other mechanisms beyond fluid accumulation. 2008; 10: 165-169View in Article
    • Scopus (234)
    • PubMed
    • Crossref
    • Google Scholar
    • Viau D.M.
    • Sala-Mercado J.A.
    • Spranger M.D.
    • et al.
    The pathophysiology of hypertensive acute heart failure. 2015; 101: 1861-1867View in Article
    • Scopus (38)
    • PubMed
    • Crossref
    • Google Scholar
    • Adams Jr., K.F.
    • Fonarow G.C.
    • Emerman C.L.
    • et al.
    Characteristics and outcomes of patients hospitalized for heart failure in the United States: rationale, design, and preliminary observations from the first 100,000 cases in the Acute Decompensated Heart Failure National Registry (ADHERE). 2005; 149: 209-216View in Article
    • Scopus (1653)
    • PubMed
    • Crossref
    • Google Scholar
    • Ooi H.
    • Chung W.
    • Biolo A.
    Arterial stiffness and vascular load in heart failure. 2008; 14: 31-36View in Article
    • Scopus (56)
    • PubMed
    • Crossref
    • Google Scholar
    • Borlaug B.A.
    • Kass D.A.
    Ventricular-vascular interaction in heart failure. 2008; 4: 23-36View in Article
    • Scopus (229)
    • PubMed
    • Abstract
    • Full Text
    • Full Text PDF
    • Google Scholar
    • O’Rourke M.F.
    Arterial aging: pathophysiological principles. 2007; 12: 329-341View in Article
    • Google Scholar
    • Gheorghiade M.
    • Filippatos G.
    • De Luca L.
    • et al.
    Congestion in acute heart failure syndromes: an essential target of evaluation and treatment. 2006; 119 (S3–s10)View in Article
    • Google Scholar
  1. Braunwald’s heart disease: a textbook of cardiovascular medicine, 2-Volume Set – 9780323463423 | US Elsevier Health Bookshop. Elsevier. (Available at:)https://www.us.elsevierhealth.com/braunwalds-heart-disease-a-textbook-of-cardiovascular-medicine-2-volume-set-9780323463423.html (Accessed February 1, 2018)View in Article
    • Google Scholar
    • Gheorghiade M.
    • Pang P.S.
    Acute heart failure syndromes. 2009; 53: 557-573View in Article
    • Scopus (462)
    • PubMed
    • Crossref
    • Google Scholar
    • Yancy C.W.
    • Jessup M.
    • Bozkurt B.
    • et al.
    2013 ACCF/AHA guideline for the management of heart failure: executive summary: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. 2013; 128: 1810-1852View in Article
    • Scopus (1646)
    • PubMed
    • Crossref
    • Google Scholar
    • Peacock W.F.
    • Fonarow G.C.
    • Emerman C.L.
    • et al.
    Impact of early initiation of intravenous therapy for acute decompensated heart failure on outcomes in ADHERE. 2007; 107: 44-51View in Article
    • Scopus (86)
    • PubMed
    • Crossref
    • Google Scholar
    • Gelman S.
    • Mushlin P.S.
    Catecholamine-induced changes in the splanchnic circulation affecting systemic hemodynamics. 2004; 100: 434-439View in Article
    • Scopus (133)
    • PubMed
    • Crossref
    • Google Scholar
    • Gandhi S.K.
    • Powers J.C.
    • Nomeir A.M.
    • et al.
    The pathogenesis of acute pulmonary edema associated with hypertension. 2001; 344: 17-22View in Article
    • Scopus (629)
    • PubMed
    • Crossref
    • Google Scholar
    • Schreiber W.
    • Woisetschläger C.
    • Binder M.
    • et al.
    The nitura study–effect of nitroglycerin or urapidil on hemodynamic, metabolic and respiratory parameters in hypertensive patients with pulmonary edema. 1998; 24: 557-563View in Article
    • Google Scholar
    • Jhund P.S.
    • McMurray J.J.
    • Davie A.P.
    The acute vascular effects of frusemide in heart failure. 2000; 50: 9-13View in Article
    • Google Scholar
    • Dikshit K.
    • Vyden J.K.
    • Forrester J.S.
    • et al.
    Renal and extrarenal hemodynamic effects of furosemide in congestive heart failure after acute myocardial infarction. 1973; 288: 1087-1090View in Article
    • Scopus (401)
    • PubMed
    • Crossref
    • Google Scholar
    • Franciosa J.A.
    • Silverstein S.R.
    Hemodynamic effects of nitroprusside and furosemide in left ventricular failure. 1982; 32: 62-69View in Article
    • Google Scholar
    • Pickkers P.
    • Dormans T.P.
    • Russel F.G.
    • et al.
    Direct vascular effects of furosemide in humans. 1997; 96: 1847-1852View in Article
    • Google Scholar
    • Holzer-Richling N.
    • Holzer M.
    • Herkner H.
    • et al.
    Randomized placebo controlled trial of furosemide on subjective perception of dyspnoea in patients with pulmonary oedema because of hypertensive crisis. 2011; 41: 627-634View in Article
    • Google Scholar
    • Butler J.
    • Forman D.E.
    • Abraham W.T.
    • et al.
    Relationship between heart failure treatment and development of worsening renal function among hospitalized patients. 2004; 147: 331-338View in Article
    • Scopus (417)
    • PubMed
    • Crossref
    • Google Scholar
    • Felker G.M.
    • O’Connor C.M.
    • Braunwald E.
    • Heart Failure Clinical Research Network Investigators
    Loop diuretics in acute decompensated heart failure: necessary? Evil? A necessary evil?. 2009; 2: 56-62View in Article
    • Scopus (229)
    • PubMed
    • Crossref
    • Google Scholar
    • Follath F.
    • Yilmaz M.B.
    • Delgado J.F.
    • et al.
    Clinical presentation, management and outcomes in the acute heart failure global survey of standard treatment (ALARM-HF). 2011; 37: 619-626View in Article
    • Scopus (181)
    • PubMed
    • Crossref
    • Google Scholar
    • Singh A.
    • Laribi S.
    • Teerlink J.R.
    • et al.
    Agents with vasodilator properties in acute heart failure. 2017; 38: 317-325View in Article
    • Scopus (37)
    • PubMed
    • Crossref
    • Google Scholar
    • Collins S.
    • Martindale J.
    Optimizing hypertensive acute heart failure management with afterload reduction. 2018; 20: 9View in Article
    • Scopus (9)
    • PubMed
    • Crossref
    • Google Scholar
    • Divakaran S.
    • Loscalzo J.
    The role of nitroglycerin and other nitrogen oxides in cardiovascular therapeutics. 2017; 70: 2393-2410View in Article
    • Google Scholar
    • Brown B.G.
    • Bolson E.
    • Petersen R.B.
    • et al.
    The mechanisms of nitroglycerin action: stenosis vasodilatation as a major component of the drug response. 1981; 64: 1089-1097View in Article
    • Google Scholar
    • Elkayam U.
    • Kulick D.
    • McIntosh N.
    • et al.
    Incidence of early tolerance to hemodynamic effects of continuous infusion of nitroglycerin in patients with coronary artery disease and heart failure. 1987; 76: 577-584View in Article
    • Scopus (194)
    • PubMed
    • Crossref
    • Google Scholar
    • Dupuis J.
    • Lalonde G.
    • Lemieux R.
    • et al.
    Tolerance to intravenous nitroglycerin in patients with congestive heart failure: role of increased intravascular volume, neurohumoral activation and lack of prevention with N-acetylcysteine. 1990; 16: 923-931View in Article
    • Google Scholar
    • Mullens W.
    • Abrahams Z.
    • Francis G.S.
    • et al.
    Sodium nitroprusside for advanced low-output heart failure. 2008; 52: 200-207View in Article
    • Scopus (145)
    • PubMed
    • Crossref
    • Google Scholar
    • Stevenson L.W.
    Management of acute decompensated heart failure.in: Mann D.L. Felker G.M. Heart failure: a companion to Braunwald’s heart disease. 3rd edition. Elsevier, Philadelphia2016: 514-534View in Article
    • Google Scholar
    • Grossman E.
    • Lip G.Y.H.
    Hypertensive crisis.in: Dimarco J. Cardiology. 3rd edition. Elsevier Ltd, Philadelphia2010: 607-618View in Article
    • Google Scholar
    • Wakai A.
    • McCabe A.
    • Kidney R.
    • et al.
    Nitrates for acute heart failure syndromes. 2013; (CD005151)View in Article
    • Google Scholar
    • Publication Committee for the VMAC Investigators (Vasodilatation in the Management of Acute CHF)
    Intravenous nesiritide vs nitroglycerin for treatment of decompensated congestive heart failure: a randomized controlled trial. 2002; 287: 1531-1540View in Article
    • PubMed
    • Google Scholar
    • Beltrame J.F.
    • Zeitz C.J.
    • Unger S.A.
    • et al.
    Nitrate therapy is an alternative to furosemide/morphine therapy in the management of acute cardiogenic pulmonary edema. 1998; 4: 271-279View in Article
    • Scopus (52)
    • PubMed
    • Abstract
    • Full Text PDF
    • Google Scholar
    • Levy P.
    • Compton S.
    • Welch R.
    • et al.
    Treatment of severe decompensated heart failure with high-dose intravenous nitroglycerin: a feasibility and outcome analysis. 2007; 50: 144-152View in Article
    • Scopus (106)
    • PubMed
    • Abstract
    • Full Text
    • Full Text PDF
    • Google Scholar
    • Wilson S.S.
    • Kwiatkowski G.M.
    • Millis S.R.
    • et al.
    Use of nitroglycerin by bolus prevents intensive care unit admission in patients with acute hypertensive heart failure. 2017; 35: 126-131View in Article
    • Scopus (25)
    • PubMed
    • Abstract
    • Full Text
    • Full Text PDF
    • Google Scholar
    • Cotter G.
    • Metzkor E.
    • Kaluski E.
    • et al.
    Randomised trial of high-dose isosorbide dinitrate plus low-dose furosemide versus high-dose furosemide plus low-dose isosorbide dinitrate in severe pulmonary oedema. 1998; 351: 389-393View in Article
    • Scopus (445)
    • PubMed
    • Abstract
    • Full Text
    • Full Text PDF
    • Google Scholar
    • Colucci W.S.
    • Elkayam U.
    • Horton D.P.
    • et al.
    Intravenous nesiritide, a natriuretic peptide, in the treatment of decompensated congestive heart failure. Nesiritide Study Group. 2000; 343: 246-253View in Article
    • Scopus (857)
    • PubMed
    • Crossref
    • Google Scholar
    • O’Connor C.M.
    • Starling R.C.
    • Hernandez A.F.
    • et al.
    Effect of nesiritide in patients with acute decompensated heart failure. 2011; 365: 32-43View in Article
    • Scopus (992)
    • PubMed
    • Crossref
    • Google Scholar
    • Grossman E.
    • Ironi A.N.
    • Messerli F.H.
    Comparative tolerability profile of hypertensive crisis treatments. 1998; 19: 99-122View in Article
    • Google Scholar
    • Ayaz S.I.
    • Sharkey C.M.
    • Kwiatkowski G.M.
    • et al.
    Intravenous enalaprilat for treatment of acute hypertensive heart failure in the emergency department. 2016; 9: 28View in Article
    • Google Scholar
    • Annane D.
    • Bellissant E.
    • Pussard E.
    • et al.
    Placebo-controlled, randomized, double-blind study of intravenous enalaprilat efficacy and safety in acute cardiogenic pulmonary edema. 1996; 94: 1316-1324View in Article
    • Scopus (60)
    • PubMed
    • Crossref
    • Google Scholar
    • Anker S.D.
    • Ponikowski P.
    • Mitrovic V.
    • et al.
    Ularitide for the treatment of acute decompensated heart failure: from preclinical to clinical studies. 2015; 36: 715-723View in Article
    • Scopus (59)
    • PubMed
    • Crossref
    • Google Scholar
    • Mitrovic V.
    • Lüss H.
    • Nitsche K.
    • et al.
    Effects of the renal natriuretic peptide urodilatin (ularitide) in patients with decompensated chronic heart failure: a double-blind, placebo-controlled, ascending-dose trial. 2005; 150: 1239View in Article
    • Scopus (83)
    • Crossref
    • Google Scholar
    • Mitrovic V.
    • Seferovic P.M.
    • Simeunovic D.
    • et al.
    Haemodynamic and clinical effects of ularitide in decompensated heart failure. 2006; 27: 2823-2832View in Article
    • Scopus (130)
    • PubMed
    • Crossref
    • Google Scholar
    • Kentsch M.
    • Ludwig D.
    • Drummer C.
    • et al.
    Haemodynamic and renal effects of urodilatin bolus injections in patients with congestive heart failure. 1992; 22: 662-669View in Article
    • Google Scholar
    • Packer M.
    • O’Connor C.
    • McMurray J.J.V.
    • et al.
    Effect of ularitide on cardiovascular mortality in acute heart failure. 2017; 376: 1956-1964View in Article
    • Scopus (208)
    • PubMed
    • Crossref
    • Google Scholar
    • Nistri S.
    • Bani D.
    Relaxin receptors and nitric oxide synthases: search for the missing link. 2003; 1: 5View in Article
    • Google Scholar
    • Dschietzig T.
    • Bartsch C.
    • Richter C.
    • et al.
    Relaxin, a pregnancy hormone, is a functional endothelin-1 antagonist: attenuation of endothelin-1-mediated vasoconstriction by stimulation of endothelin type-B receptor expression via ERK-1/2 and nuclear factor-kappaB. 2003; 92: 32-40View in Article
    • Google Scholar
    • Teichman S.L.
    • Unemori E.
    • Teerlink J.R.
    • et al.
    Relaxin: review of biology and potential role in treating heart failure. 2010; 7: 75-82View in Article
    • Scopus (110)
    • PubMed
    • Crossref
    • Google Scholar
    • Teerlink J.R.
    • Metra M.
    • Felker G.M.
    • et al.
    Relaxin for the treatment of patients with acute heart failure (Pre-RELAX-AHF): a multicentre, randomised, placebo-controlled, parallel-group, dose-finding phase IIb study. 2009; 373: 1429-1439View in Article
    • Scopus (355)
    • PubMed
    • Abstract
    • Full Text
    • Full Text PDF
    • Google Scholar
    • Teerlink J.R.
    • Cotter G.
    • Davison B.A.
    • et al.
    Serelaxin, recombinant human relaxin-2, for treatment of acute heart failure (RELAX-AHF): a randomised, placebo-controlled trial. 2013; 381: 29-39View in Article
    • Scopus (742)
    • PubMed
    • Abstract
    • Full Text
    • Full Text PDF
    • Google Scholar
    • ClinicalTrials.gov
    Efficacy, safety and tolerability of serelaxin when added to standard therapy in AHF (RELAX-AHF-2). (Available at:)https://clinicaltrials.gov/ct2/show/NCT01870778 (Accessed February 3, 2019)View in Article
    • Google Scholar
    • Aroney C.N.
    • Semigran M.J.
    • Dec G.W.
    • et al.
    Inotropic effect of nicardipine in patients with heart failure: assessment by left ventricular end-systolic pressure-volume analysis. 1989; 14: 1331-1338View in Article
    • Google Scholar
    • Packer M.
    • Lee W.H.
    • Medina N.
    • et al.
    Prognostic importance of the immediate hemodynamic response to nifedipine in patients with severe left ventricular dysfunction. 1987; 10: 1303-1311View in Article
    • Google Scholar
    • Kieler-Jensen N.
    • Jolin-Mellgård A.
    • Nordlander M.
    • et al.
    Coronary and systemic hemodynamic effects of clevidipine, an ultra-short-acting calcium antagonist, for treatment of hypertension after coronary artery surgery. 2000; 44: 186-193View in Article
    • Scopus (57)
    • PubMed
    • Crossref
    • Google Scholar
    • Peacock F.
    • Varon J.
    • Ebrahimi R.
    • et al.
    Clevidipine for severe hypertension in acute heart failure: a VELOCITY trial analysis. 2010; 16: 55-59View in Article
    • Scopus (19)
    • PubMed
    • Crossref
    • Google Scholar
    • Peacock W.F.
    • Chandra A.
    • Char D.
    • et al.
    Clevidipine in acute heart failure: results of the a study of blood pressure control in acute heart failure-a pilot study (PRONTO). 2014; 167: 529-536View in Article
    • Scopus (64)
    • PubMed
    • Crossref
    • Google Scholar
    • Stasch J.P.
    • Schmidt P.
    • Alonso-Alija C.
    • et al.
    NO- and haem-independent activation of soluble guanylyl cyclase: molecular basis and cardiovascular implications of a new pharmacological principle. 2002; 136: 773-783View in Article
    • Scopus (265)
    • PubMed
    • Crossref
    • Google Scholar
    • Lapp H.
    • Mitrovic V.
    • Franz N.
    • et al.
    Cinaciguat (BAY 58-2667) improves cardiopulmonary hemodynamics in patients with acute decompensated heart failure. 2009; 119: 2781-2788View in Article
    • Scopus (111)
    • PubMed
    • Crossref
    • Google Scholar
    • Erdmann E.
    • Semigran M.J.
    • Nieminen M.S.
    • et al.
    Cinaciguat, a soluble guanylate cyclase activator, unloads the heart but also causes hypotension in acute decompensated heart failure. 2013; 34: 57-67View in Article
    • Google Scholar
    • Gheorghiade M.
    • Greene S.J.
    • Filippatos G.
    • et al.
    Cinaciguat, a soluble guanylate cyclase activator: results from the randomized, controlled, phase IIb COMPOSE programme in acute heart failure syndromes. 2012; 14: 1056-1066View in Article
    • Google Scholar
    • Pieske B.
    • Maggioni A.P.
    • Lam C.S.P.
    • et al.
    Vericiguat in patients with worsening chronic heart failure and preserved ejection fraction: results of the SOluble guanylate Cyclase stimulatoR in heArT failurE patientS with PRESERVED EF (SOCRATES-PRESERVED) study. 2017; 38: 1119-1127View in Article
    • Scopus (224)
    • PubMed
    • Crossref
    • Google Scholar

Read more  Proceedings of the 6th World Symposium on Pulmonary Hypertension

References

Recommended For You

About the Author: Tung Chi